miércoles, 13 de junio de 2012

Nanomedicine Fact Sheet

Nanomedicine Fact Sheet

Genome.gov National Human Genome Research Institute National Institutes of Health

Nanomedicine

Overview

What if doctors had tiny tools that could search out and destroy the very first cancer cells of a tumor developing in the body? What if a cell's broken part could be removed and replaced with a functioning miniature biological machine? Or what if molecule-sized pumps could be implanted in sick people to deliver life-saving medicines precisely where they are needed? These scenarios may sound unbelievable, but they are the ultimate goals of nanomedicine, a cutting-edge area of biomedical research that seeks to use nanotechnology tools to improve human health.

What is a nanometer?

A lot of things are small in today's high-tech world of biomedical tools and therapies. But when it comes to nanomedicine, researchers are talking very, very small. A nanometer is one-billionth of a meter, too small even to be seen with a conventional lab microscope.

What is nanotechnology?

Nanotechnology is the broad scientific field that encompasses nanomedicine. It involves the creation and use of materials and devices at the level of molecules and atoms, which are the parts of matter that combine to make molecules. Non-medical applications of nanotechnology now under development include tiny semiconductor chips made out of strings of single molecules and miniature computers made out of DNA, the material of our genes. Federally supported research in this area, conducted under the rubric of the National Nanotechnology Initiative, is ongoing with coordinated support from several agencies.

What is being done to advance nanomedicine?

For hundreds of years, microscopes have offered scientists a window inside cells. Researchers have used ever more powerful visualization tools to extensively categorize the parts and sub-parts of cells in vivid detail. Yet, what scientists have not been able to do is to exhaustively inventory cells, cell parts, and molecules within cell parts to answer questions such as, "How many?" "How big?" and "How fast?" Obtaining thorough, reliable measures of quantity is the vital first step of nanomedicine.
As part of the National Institutes of Health (NIH) Common Fund [nihroadmap.nih.gov], the NIH [nih.gov] will establish a handful of nanomedicine centers. These centers will be staffed by a highly interdisciplinary scientific crew including biologists, physicians, mathematicians, engineers and computer scientists. Research conducted over the first few years will be spent gathering extensive information about how molecular machines are built. A key activity during this time will be the development of a new kind of vocabulary, or lexicon, to define biological parts and processes in engineering terms.
Once researchers have completely catalogued the interactions between and within molecules, they can begin to look for patterns and a higher order of connectedness than is possible to identify with current experimental methods. Mapping these networks and understanding how they change over time will be a crucial step toward helping scientists understand nature's rules of biological design. Understanding these rules will, in many years' time, enable researchers to use this information to address biological issues in unhealthy cells.
The availability of innovative, body-friendly nanotools will help scientists figure out how to build synthetic biological devices, such as miniature, implantable pumps for drug delivery or tiny sensors to scan for the presence of infectious agents or metabolic imbalances that could spell trouble for the body.

No hay comentarios:

Publicar un comentario